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There is an intimate relationship between (1) the set of all Tietze extensions of
a given continuous function on a compact subset S of a locally compact Hausdorff
space T to all of T, and (2) the set of all best approximations to elements of Co( T)
from the ideal M in Co(T) consisting of those functions which vanish on S. This
relation is used, for example, to deduce that the Tietze extension map has a linear
selection if and only if the metric projection onto M has a linear selection. It is
known that the former holds whenever T is metrizable. © 1991 Academic Press, Inc.

1. INTRODUCTION

Let T be a locally compact Hausdorff space and S a compact subset of
T. The Tietze extension theorem (cf. [11, Theorem 20.4]) states that each
real continuous function g on S has a continuous extension Ii to all
of T which vanishes off a compact set and has the same norm:
max{lg(s)llsES}=max{lli(t)lltET}. In particular, the extension is in
Co(T), the space of all real continuous functions I "vanishing at infinity"
(i.e., {t E Tllf(t)1 ~ s} is compact for each s> 0), and endowed with the
supremum norm

IIIII = sup{ I/(t)11 t E T}.

If T is actually compact, then Co(T) reduces to the space of all real
continuous functions on T, and is usually denoted C(T). For any g E C(S),
we write

Ilglis :=sup{lg(s)llsES}.
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1.1. DEFINITION. For each g EC(S), let E(g) denote the set of all Tietze
extensions of g to Co(T). That is,

E(g)= {IE Co(T) IIls= g, IIIII = IlgIls}.

In this notation, the Tietze extension theorem simply states that E(g) is
not empty for each g EC(S).

Next we define a subspace of Co(T) by

M=Ms := {IE Co(T) IIls=O}.

It is easy to see that M is a closed ideal in Co(T).

1.2. DEFINITION. For each IE Co(T), the set of all best approximations
to I from M is defined by

PM(f):= {gEMIIII - gil =d(f, M)},

where

d(f, M) :=inf{111- glllgEM}.

It is a well-known result of Alfsen and EfIros [1] that PM (f) is not
empty for each IE Co(T). (This is also an immediate consequence of
Theorem 3.3 below.)

In Section 2 we prove that the set-valued mapping E is a contraction and
admits a continuous homogeneous selection. The main result of Section 3
(Theorem 3.3) is a formula relating E and PM. Namely, PM(f) =
1- E(fl s) for each IE Co(T). From this, one can deduce that PM has a
continuous selection p which also satisfies p(al+ g) = ap(f) + p(g) for all
IE Co(T), gEM, and a ER. Also, PM is Lipschitz continuous with Lipschitz
constant 2. The condition that E have a linear selection is equivalent to PM
having a linear selection (Theorem 3.8). Using the well-known Borsuk
theorem [3], we deduce that PM has a linear selection when T is
metrizable (Corollary 3.9). Finally, some results are established which
relate the condition that M be complemented with the existence of
various types of selections for E and PM. In particular, we have shown
(Theorem 3.10) that if M is complemented, then PM has a Lipschitz
continuous selection.

2. TIETZE EXTENSIONS

In this section we establish a few properties of the Tietze extension
map E.
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2.1. LEMMA. (1) For each g E C(S), E(g) is a (nonempty) closed,
bounded, and convex subset 01 Co(T).

(2) E is "homogeneous"; i.e., E(ag)=aE(g) lor each gEC(S) and
a E R.

Proof (1) Simple to prove.

(2) Let g E C(S) and a> O. Then

E(ag) = {IECo(T) I/ls=ag, 11I11 = Ilagll s }

=a{a-I/I/E Co(T), a-l/ls= g, Ila-1/11 = Ilglls}

=a{IECo(T) I/ls= g, 11I11 = Ilglls} =aE(g).

Also,

E( - g) = {IE Co(T) I/ls= - g, 11II1 = 11- glls}

= - { -IE Co(T) 1-Ils= g, II-III = Ilglls}

= - {IE Co(T) I/ls= g, 11I11 = Ilglls} = -E(g).

This implies that E is homogeneous. I
Let Y be a subspace of Co(T) and let H denote the Hausdorff metric on

the space H( Y) of all nonempty subsets of Y which are closed, bounded,
and convex. Thus for any A, B in H( Y), we have

H(A,B):=max{sup inf Iia-bll, sup inf Iia-bll}.
aEA bEB bEB aEA

We now show that the Tietze extension mapping E: C(S) ---t H(Co(T)) is
Lipschitz continuous with Lipschitz constant 1. That is, E is a contraction.

2.2. THEOREM. For any g, hE C(S),

H(E(g), E(h)) ~ II g - hll s· (2.2.1)

Proof Let IEE(g). Then Ils= g and 11II1 = IIglls. Choose any
q E E(h - g). Then ql s = h - g and Ilqll = Ilh - qll s. Define the notation

{

b if r > b

[r]~:=max{a,min{r,b}}= r

a

if a~r~b

if r<a

and set

p(t) := [f(t) + q(t)] 1~1:1~lls' t E T.

It is easy to check that p E Co(T).

Claim: p E E(h). (2.2.2)
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In fact, Ilpll ~ Ilhll s and, for t E S,

p(t) = [f(t) + q(t)] llil 1111 II s= [g(t) + h(t) - g( t)] 11il1il111s = [h(t)] 11il1il111s = h(t).

This proves the claim.

Claim: IIp- fll ~ Ilg-hlls.

For any t E T, we consider three cases.

(2.2.3 )

(2.2.5)

(i) f(t) + q(t) E [ -llhll s, Ilhll s].

Then p(t) = f(t) + q(t) and

Ip(t) - f(t)1 = Iq(t)1 ~ Ilqll = Ilh - glls· (2.2.4)

(ii) f(t) + q(t) > Ilhll s·

Then p(t) = Ilhll s. But

II g- hils ~ Ilglls-llhll s = II glls- p(t) ~ f(t) - p(t) > -q(t) ~ -llg- hll s·

That is,

If(t)- p(t)1 ~ Ilg-hll s·

(iii) f(t)+q(t)< -llhll s.

Then p(t) = - Ilhll sand

-llg-hlls~-llglls+ Ilhll s= -llglls- p(t)~f(t)-p(t)~ -q(t)~ Ilg-hlls.

Thus

If(t) - p(t)1 ~ II g - hll s'

By (2.2.4), (2.2.5), and (2.2.6) we get

If(t)- p(t)1 ~ Ilg-hlls

for all t E T. This proves (2.2.3).
It follows from (2.2.3) that

sup inf Ilf - pll ~ Ilg-hlls
fEE(g) pEE(h)

for any g, hE C(S). By symmetry, we also obtain

sup inf Ilf - pll ~ Ilg-hll s
pEE(h) fEE(g)

for any g, hE C(S). Thus (2.2.1) holds. I

(2.2.6)
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A selection for the set-valued mapping E is any function e: C(S) -4 Co(
such that e(g) E E(g) for each g E C(S).

By Theorem 2.2, E is Lipschitz continuous and, in particular, lower semi
continuous. By Michael's theorem [10], E admits a continuous selection e.
Moreover, by a result of the authors [6, Lemma 3.1], we may also choose
e to be "homogeneous"; i.e.,

e(af) = ae(f), fE C(S), IY. E R.

In fact, if e is a continuous (resp. Lipschitz continuous) selection for
define eon C(S) by

{

I [( f) (-f)J-llfll e - -e -
e(f) = ~ s Ilfll s Ilfll s

if f#O

if f=O.

Then it can be readily verified [6] that e is a continuous (resp. Lipschitz
continuous) selection for E which is also homogeneous. The proof of this
fact uses the properties that E is homogeneous and "bounded"; i.e.,

sup{ II gill g EE(f)} < Ilfll s, fE C(S).

These remarks can be summarized in the following coronary.

2.3. COROLLARY. The Tietze extension map E admits a continuous
homogeneous selection.

In Section 3, we will see that a stronger result is available under certain
conditions (e.g., if T is metrizable).

3. BEST ApPROXIMATION FROM CLOSED IDEALS

Recall that

is a closed ideal in Co(T). The set-valued mapping PM defined on Co(T) by

PM(f) = {gE Milif - gil = d(f, M)}

is called the metric projection onto M. As noted in the Introduction,
PM(f) ¥- rj; for each f E Co(T) by [1]. Since it is easy to verify that
P M(f) is a closed, bounded, and convex subset of M, we see that
PM: Co(T) ~ H(M).

The first result is a useful distance formula from any fE Co(T) to M.
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3.1. LEMMA. ForeachIECo(T),

d(j, M)= 1I/IIs :=max{l/(s)llsES}.

Proof For any gEM,

III - gil ~ max I/(s) - g(s)1 = max I/(s )1·
seS SES

Thus

d(j, M) ~ IIIII s· (3.1.1)

Since I is continuous, for any B > 0 and s ES choose a neighborhood Us
of s so that

I/U) - l(s)1 < B for all t E Us'

Since S is compact, there exist a finite number of points s1, ..., Sn in S such
that S c U7 Us;,

By Vrysohn's lemma we can choose gE Co(t) so that g= 1 on S, g= 0
off U7 Us;, and 0:( g:( 1. Then g :=1(1- g) ECo(T), g = 0 on S, and so
gEM. If t ET\U7 Us;, g(t) = 0 so I/(t) - g(t)1 = O. If t E Us; for some i, then

I/(t) - g(t)1 = I/(t) g(t)1 :( I/(t)! :( I/(t) - l(si)1 + I/(s;)1 < B+ III1I s·

Hence III - gil < IIIII s+ B which implies

d(j, M) < IIIII s+ B.

Since B was arbitrary,

d(j, M) :( IIIII s·

Combining (3.1.1) and (3.1.2) we obtain the result. I
The kernel of PM is the set

(3.1.2)

ker PM := {IE Co(T) I0 EPM(f)} = {IE Co(T) 111/11 = d(j, M)}.

An immediate consequence of Lemma 3.1 is the

3.2. COROLLARY. ker PM= {IE Co(T) I 1II1I = 1I/IIs}.
We now state the main result of this section. It reveals an intimate

connection between the set of best approximations to I from M and the set
of all Tietze extensions ofII s.
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In particular, best approximations from M to any fE Co(T) always exist.

Proof Let g E P M(f). Then, using Lemma 3.1, h = f - g satisfies

Ilhll = Ilf - gil = d(j, M) = Ilfll s

and, for t E S,

h( t) = f( t) - g( t) = f( t).

Thus h E E(fl s) and g Ef - E(fl s)·
Conversely, suppose hE E(fl s). Setting g = f - h we see that g = 0 on S

so gEM. Also,

Ilf - gil = Ilhll = Ilflls= d(j, M)

implies that g E PM (I). Hence h = f - g Ef - PM (f). I

Remark. It is worth noting that Theorem 3.3 can also be deduced from
a general existence theorem established by one of us [4, Theorem 4.2].
There it was proved that if M is any subspace of a normed linear space X,
then

PM(x)=x-HML(X), XEX,

where H ML(X) denotes the set of all "Helly extensions" of x relative to M ~

That is,

HML(X) = {YEXlx*(y)=x*(x) for every x*EM~, Ilyll = IlxIIML},

where IlxIIML=sup{x*(x)lx*EM~, Ilx*ll~l}. If we specialize this by
taking X = Co(T) and M = {gE Co(T) Igis = O}, we obtain that HML(X) =
E(xls) and we recover Theorem 3.3.

Let X and Y be Banach spaces and H( Y) denote the collection of all
nonempty subsets of Y which are closed, bounded, and convex. Endow
H( Y) with the Hausdorff metric H. That is, for A, BE H( Y),

H(A, B) :=max{sup d(a, B), sup d(b, A)},
aEA bEE

where

d(a, B):= inf Iia-bli.
bEB
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A (set-valued) mapping F: X ~ H( Y) is called bounded if there is a constant
c such that

sup{ I[ylll y E F(x)} ~ cllxll

for each x E X. F is called homogeneous if

F(ax) = aF(x)

for each x E X and a E R.
A function f: X ~ Y is called a selection for F if f(x) E F(x) for each

x E X. A selection is called homogeneous if

f(ax) = af(x) for each x E X, a E R.

If Y is a subspace of X, a selection f is called additive modulo Y if

f(x + y) = f(x) + f(y) for every XEX, yE Y.

3.4. COROLLARY. The metric projection PM has a continuous selection
which is homogeneous and additive modulo M.

Proof By Corollary 2.3,E has a selection e which is continuous and
homogeneous. Define p on Co( T) by p =1- e 0 R, where I is the identity on
Co(T) and R: Co(T) ~ C(S) is the restriction map Rf = fl s. From
Theorem 3.3 it is seen that p is a selection for PM which is continuous and
homogeneous. To show that p is additive modulo M, let f E Co(T) and
gEM. Then

p(f+ g) = f + g- e((f+ g)ls) = f + g- e(fls+ g[s) = f + g- e(fls)

=p(f) + g = p(f) + p(g)·1

Fakhoury [8] and, independently, Holmes, Scranton, and Ward [9],
have given nonconstructive proofs that the metric projection onto an
M-ideal in a Banach space has a continuous homogeneous selection. Yost
[13] has deduced, more generally, that for a certain class of subspaces M
which include the M-ideals, PM admits a continuous homogeneous selec
tion which is additive modulo M. Since each M-ideal in Co(T) has the form

M= {IE Co(T) Ifls=O}

for some closed subset S of T, it follows that nonconstructive proofs of
Corollary 3.4 were also given in [13] and (without the "additive modulo
M" statement) in [8,9].
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for all j, g in Co(T).

Proof Using Theorems 3.3 and Lemma 2.2, we obtain for any j, g in
Co(T),

H(PM(f), PM(g))=H(f-E(fls), g-E(gls))~H(E(fls),E(gld)+ lif-gll

~ Ilf - glls+ Ilf - gil ~211f - gil· I

Remarks. The constant 2 in Corollary 3.5 is best possible. This can be
seen, for example, by taking T= {l, 2} and S= {2} so C(T)=loo(2) is the
plane and M = {jE C( T) If(2) = o} is the "horizontal axis." Taking
f = (0,0) and g = (1, 1), we observe that P M(f) = 0,

PM(g)= {p(O, 1)10~p~2},

and

H(PM(f), P M(g)) = 2 = 211f - gil·

It perhaps is worth noting that Corollary 3.4 can also be deduced from
Corollary 3.5, the Michael selection theorem, and Theorem 3.4 of [6].

Another consequence of Theorem 3.3 is that selections of one type for the
mapping E are equivalent to selections of a similar type for PM' Before
proving this, it is convenient to isolate a key step that is used in at least
three places in the sequel.

3.6. LEMMA. Let p: Co(T) -> M be idempotent (i.e., p2 = p) and additive
modulo M. Then

f - p(f)=h- p(h) (3.6.1 )

for all j, hE Co(T) with fls=hl s . In particular, the function e: C(S)->
Co(T), defined by

e(g) := f - p(f), gE C(S),

for any f E C o(T) with fl s = g, is well-defined.

Proof Letj, hE Co(T) andfls= his. Then g:= f - hEM so

p(f)= p(h+ g)= p(h)+ p(g)= p(h)+ g= p(h)+ f-h.

This proves (3.6.1). I

640(64(1-5
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In particular, p satisfies the hypothesis of Lemma 3.6 if p is an ordinary
(i.e., linear) projection onto M, or if p is a selection for PM which is
additive modulo M.

3.7. THEOREM. E has a linear selection (resp. Lipschitz continuous
selection) if and only if PM has a linear selection (resp. Lipschitz continuous
selection which is additive modulo M).

Proof We prove the statement about Lipschitz continuous selections.
The statement about linear selections is similar, but simpler.

Let e be a Lipschitz continuous selection for E. Then there is a constant
2> 0 such that

Ile(f)-e(g)11 ~211I - glls
for all J, g E C(S). Define p on Co( T) by

p(f) :=1 -e(fls)·

By Theorem 3.3, p is a selection for PM' Also,

(3.7.1 )

IIp(f) - p(h)11 = III - e(fls) - h + e(hls)11 ~ III - hll + Ile(fls) - e(hls)11

~ III -hll +2111 -hlls~(l +2) III -hll

implies that p is Lipschitz continuous. Further, for IE Co(T) and gEM,

p(f + g) = I + g- e((f + g)ls) = I + g-e(fls) = p(f) + g= p(f) + p(g)

implies that p is additive modulo M.
Conversely, suppose p is a Lipschitz continuous selection for PM which

is additive modulo M, and having Lipschitz constant 2. Then by
Lemma 3.6, the function e: C(S) --+ Co(T) defined by

e(g) = I - p(f),

for any IE Co(T) with II s = g, is well-defined. Moreover, by Theorem 3.3,
e is a selection for E.

For giEC(S) U=1,2), choose IIECo(T) so that Ills=gl and
h1EE(gz-gr). Then

so
Ile(gr}-e(gz)// = 1111 - P(fl)- (fl +h1)+ P(fl +hr)ll

= II-hI + P(fl +h1)- p(fr}11

~ Ilhlll + IIp(fl + hI) - p(fl)11

~ (l +2) IIh l li = (l +2) IIgl - gzlls·

This proves that e is Lipschitz continuous. I



TIETZE EXTENSIONS 65

The next result gives a useful alternate characterization of when E has a
linear selection.

3.8. THEOREM. The following statements are equivalent.

(1) E has a linear selection;

(2) PM has a linear selection;

(3) ker PM contains a closed subspace N such that Co(T) = M (f; N;

(4) M is complemented in Co(T), say Co(T) = M (f; N, and the projec-
tion Ponto M along N satisfies III - PII = 1.

Proof The equivalence of (1) and (2) is contained in Theorem 3.7, and
the equivalence of (2) and (3) is from Stoer [12] and, more generally,
[5, Theorem 2.2].

(3)= (4). Assume (3) holds and let P denote the projection onto M
along N. Then since 1- P is the projection onto N, III - PII ;,: 1. But for all
fECo(T),f -P(f)ENcker PM so

II (I - P) fll = Ilf - P(f) /I = d(f- P(f), M) = d(f, M) ~ Ilfll·

Hence 111- PII = 1.
(4)=(2). Suppose (4) holds. LetfECo(T) and choose any gEPM(f).

Then

Ilf - P(f)11 = Ilf - g-P(f - g)11 = 11(1-P)(f - g)11 ~ Ilf - gil

implies that P(f) E PM (f). That is, P is a linear selection for PM· I
It was proved by Borsuk [3] (more generally, see Dugundji [7] and

Arens [2]) that if T is (compact and) metrizable, then E has a linear selec
tion. However, their proofs are also valid in the locally compact case. This
fact, along with Theorem 3.8, implies the next result.

3.9. COROLLARY. If T is metrizable, then PM has a linear selection and
M is complemented.

In particular, Theorem 3.8 implies that if E has a linear selection, then M
is complemented. We do not know whether the converse is valid. That is,
if M is complemented, must E have a linear selection? However, we do
have a partial canverse.

3.10. THEOREM. If M is complemented, then E has a Lipschitz continuous
homogeneous selection. In particular, PM has a Lipschitz continuous selection
which is homogeneous and additive modulo M.
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Proof The last statement follows from Theorem 3.7 and the comment
following Lemma 2.2.

Let Co(T) = M EB N, let P denote the projection onto M along N, and let
Q = 1- P. That is, Q is the projection onto N along M. Then by
Lemma 3.6, Q(f) = Q(h) for eachj, hE Co(T) withfls = his. Next define e
on C(S) by

e(g) = [Q(f)] 1~11\~lls

for any fE Co(T) withfls= g. [The notation [rJ~ is defined as in the proof
of Lemma 2.2. J Since f - Q(f) E M for any f E Co(T), when f EE(g) we
have that

g=fls= Q(f)ls

so g = e(g)1 sand e(g) E E(g). That is, e is a selection for E. Next we verify
that e is Lipschitz continuous.

First observe that for a, b ~ 0, it is easy to verify that

(3.10.1 )

and

(3.10.2)

Now let giEC(S) (i=1,2) and choose f1ECo(T) such that flls=gl'
hI E E(gz - gd, and setfz = fl + hI' Thenfzls = gz and IIh111 = II gz - gIlls·
Let 2=max{llgtlls, Ilgzlls}. Then

O~A-ligills~Ilgl- gzlls (i= 1, 2). (3.10.3)

Using (3.10.1),0.10.2), and (3.10.3), we obtain

Ile(gd-e(gz)ll = II[Q(fdJI~\II~lIls- [Q(fz)]I~111~21Isll

~ II [Q(fdJ ~1\~;lls- [Q(fdJ~J + II [Q(fdJ~A - [Q(fz)]~AII

+ II [Q(fZ)l'-A - [Q(fz)] 1~111~2I1sll

~ IA-llglllsl + IIQ(fd - Q(fz)ll-IA -llgzllsl

~21Ig1-gzlls+IIQllllfl-f211

= 211g1 - gzlls + IIQII Ilhtll = (2 + IIQII) Ilgl - g211s·

This proves e is Lipschitz continuous with Lipschitz constant 2 + II Q II.
Finally, by the remark following Lemma 2.2, we can arrange that e is

homogeneous. I



TIETZE EXTENSIONS 67

There are cases in which PM has a linear selection and M is comple
mented, which do not require the metrizability of T. This is when either S
or T\S is finite. That is, when M is either finite-codimensional or finite
dimensional.

3.11. COROLLARY. Let S= {Sb ... , sn} be a finite subset of the locally
compact Hausdorff space T and let

M= {lECo(T)lf(s;)=O U= 1, 2, ... , n)}.

Then E has a linear selection given by
n

e(g) := If(s;) Xi'
1

and PM has a linear selection given by
n

p(f) = f- If(s;) Xi'
1

gE C(S) (3.11.1)

(3.11.2)

where {Xl, X2 , ..• , Xn} is any prescribed set in Co(T) having the property that
O~Xi~ 1, Xi(t;) = 1, and the supports of Xi and xj are disjoint ifiioJ.

Proof The existence of the functions Xi is guaranteed by Urysohn's
lemma. Next note that the mapping e on C(S) defined by (3.11.1) satisfies
e: C(S) ~ Co(T), e is linear, and e(g) E E(g) for each g E C(S). By
Theorem 3.3, the map p defined by (3.11.2) is a linear selection for PM' I

3.12. COROLLARY. Let S be a compact subset of the (locally) compact
Hausdorff space T such that T\S is finite, and let

M = {IE Co(T) Ifls= O}.

Then E has a linear selection e given by

e(g)(t) = {~(t) if tES

if tE T\S'
g E C(S) (3.12.1 )

and PM has a linear selection p defined by

p(f)= f - fXs, (3.12.2)

where Xs is the characteristic function of S.

Proof Since S is both open and closed, XsECo( T) and e( g) E Co( T) for
each g E C(S). The remainder of the proof is like that of Corollary 3.11. I

The last two corollaries along with Corollary 3.9 raise the natural
question: Must PM (or equivalently E) always have a linear selection?
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