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There is an intimate relationship between (1) the set of all Tietze extensions of
a given continuous function on a compact subset S of a locally compact Hausdorff
space T to all of T, and (2) the set of all best approximations to elements of Co(T)
from the ideal M in Cy(7T) consisting of those functions which vanish on 5. This
relation is used, for example, to deduce that the Tietze extension map has a linear
selection if and only if the metric projection onto M has a linear selection. It is
known that the former holds whenever 7 is metrizable.  © 1991 Academic Press, Inc.

1. INTRODUCTION

Let 7 be a locally compact Hausdorff space and S a compact subset of
T. The Tietze extension theorem (cf. [11, Theorem 20.47]) states that each
real continuous function g on S has a continuous extension £ to all
of T which vanishes off a compact set and has the same norm:
max{|g(s)||se S} =max{|g(¢)||te T}. In particular, the extension is in
Co(T), the space of all real continuous functions f “vanishing at infinity”
{ie, {reT||f(#)| =e} is compact for each ¢>0), and endowed with the
supremum norm

I/l =sup{lf()l|z€ T}.

If T is actually compact, then Cy(T) reduces to the space of all real
continuous functions on 7, and is usually denoted C(7). For any g € C(S),
we write

lglls :=sup{lg(s)||seS}.
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1.1. DerNITION.  For each g e C(S), let E(g) denote the set of all Tietze
extensions of g to Cy(T). That is,

E(g)={feCo(T)| fls=g ISl =lgls}

In this notation, the Tietze extension theorem simply states that E(g) is
not empty for each ge C(S).
Next we define a subspace of Cy(T) by

M=M= {feCo(T)| fls=0}.

It is easy to see that M is a closed ideal in Cy(T).

1.2. DerINITION.  For each fe Co(T), the set of all best approximations
to f from M is defined by

Pu(f):={geM||f—¢gl=d(f, M)},
where
d(f, M) :=inf{|f— gl |ge M}.

It is a well-known result of Alfsen and Effros [1] that P, (f) is not
empty for each fe Co(T). (This is also an immediate consequence of
Theorem 3.3 below.)

In Section 2 we prove that the set-valued mapping E is a contraction and
admits a continuous homogeneous selection. The main result of Section 3
(Theorem 3.3) is a formula relating E and P,,. Namely, P, (f) =
f—E(f|s) for each fe C(T). From this, one can deduce that P,, has a
continuous selection p which also satisfies p(af + g)=ap(f) + p(g) for all
feCyo(T), ge M, and o€ R. Also, P,, is Lipschitz continuous with Lipschitz
constant 2. The condition that E have a linear selection is equivalent to P,
having a linear selection (Theorem 3.8). Using the well-known Borsuk
theorem [37], we deduce that P,, has a linear selection when T is
metrizable (Corollary 3.9). Finally, some results are established which
relate the condition that M be complemented with the existence of
various types of selections for E and P,,. In particular, we have shown
(Theorem 3.10) that if M is complemented, then P, has a Lipschitz
continuous selection.

2. TIETZE EXTENSIONS

In this section we establish a few properties of the Tietze extension
map E.
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2.1. LemMa. (1) For each g € C(S), E(g) is a (nonempty) closed,
bounded, and convex subset of Co(T).

(2) E is “homogeneous”; ie., E(ag)=0aE(g) for each ge C(S) and
xeR.

Proof. (1) Simple to prove.
(2) Let ge C(S) and «>0. Then

E(ag)={fe Co(T) | fls=0g, | fll = lloglls}

=a{a " f1feCo(T) o fls=g la~fl=lgls}
=a{feCo(T) | fls=g& Ifll=lgls}=aE(g)
Also,

E(—g)={feCo(T)|fls=~g Ifl=1-gls}
=—{—feCD) |- fls=25 I—flI=llgls}
=—{feCo(D)|fls=g IfI=lgls}=—E(g).

This implies that F is homogeneous. |

Let Y be a subspace of Cy(7) and let H denote the Hausdorff metric on
the space H(Y) of all nonempty subsets of ¥ which are closed, bounded,
and convex. Thus for any 4, B in H(Y), we have

H(A, B) := max{sup bing la—bll, sup in£ la—25]}.
€ beB ae

ag 4

We now show that the Tietze extension mapping E: C(S) — H(Cy(T)) is
Lipschitz continuous with Lipschitz constant 1. That is, £ is a contraction.

2.2. TueorReM. For any g, he C(S),
H(E(g), E(h) < llg—hls. (22.1)

Proof. Let feE(g). Then fl¢=g and ||f]|=1|gls. Choose any
geE(h— g). Then q|s=h— g and |g|| = | A~ ¢ s. Define the notation

b if r>b
[¥1%:=max{a, min{r,b}}=<r if a<r<b
a if r<a
and set

p(0) =Lf()+q()]™s,,  teT.

It is easy to check that pe Cy(T).
Claim: pe E(h). (2.2.2)
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In fact, ||p|l <|hls and, for e S,

p()=[f(0)+q(r)1"™s, .= [g(t) + h(t) — g()]™5, ;= [A(1)]'

This proves the claim.
Claim: |p—fI<llg—hls.
For any ¢e T, we consider three cases.
i) fO)+a@)el—IlAls, IAlls]
Then p(t)= f(¢)+ ¢(t) and

|p() = f(D) = lq(D) < ligll = 1A — gl s-

i) f(O)+q(2)>||A]s.
Then p(z)= ||A| s. But

= h(1).

(2.2.3)

(2.2.4)

lg—hils=lgls—lhls=lglls— p(1) = f(t) = p(t) > —q(6) = — llg — Al s

That is,
/()= p() <l g—hlls-

(i) f(r)+q()< —lhls.
Then p(¢)= — ||k| g and

(2.2.5)

—llg—hlls< —lglls+ Il s=—lgls—p(O)<f(O) = p()< —q() <[ g —hll 5.

Thus
/() —p(I<lg—hls

By (2.2.4), (2.2.5), and (2.2.6) we get
()= p()l<llg—hls

for all ze T. This proves (2.2.3).
It follows from (2.2.3) that

sup inf ) If—pli<lg—hls

feE(g) PEEH
for any g, he C(S). By symmetry, we also obtain

sup inf |f—pl<lg—h
pe E(h) FEE®) f—rI<ig Is

for any g, he C(S). Thus (2.2.1) holds. |

(2.2.6)
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A selection for the set-valued mapping E is any function e: C{S) - Co(T)
such that e(g) e E(g) for each ge C(S).

By Theorem 2.2, E is Lipschitz continuous and, in particular, lower semi-
continuous. By Michael’s theorem [10], E admits a continuous selection e.
Moreover, by a result of the authors [ 6, Lemma 3.1, we may also choose
e to be “homogeneous”; ie.,

e(af) =ae(f), feC(S),acR.

In fact, if ¢ is a continuous (resp. Lipschitz continuous) selection for £,
define & on C(S) by

(/)= %“f“s[e@ﬁ!s)_e(n;ﬂﬂ i /=0

0 if £=0.

Then it can be readily verified [6] that € is a continuous (resp. Lipschitz
continuous) selection for E which is also homogeneous. The proof of this
fact uses the properties that E is homogeneous and “bounded”; ie.,

sup{llgllge E(N)}<Iflls,  feC(S).

These remarks can be summarized in the following corollary.
2.3. CorROLLARY. The Tietze extension map E adwmits a continuous
homogeneous selection.

In Section 3, we will see that a stronger result is available under certain
conditions (e.g., if T is metrizable).

3. BEST APPROXIMATION FROM CLOSED IDEALS

Recall that
M= {fe Co(T) | f1s=0}

is a closed ideal in Cy(T). The set-valued mapping P, defined on Cy(7) by
Pulf)=1geM||f—gl=4df, M)}

is called the metric projection onto M. As noted in the Introduction,
P (f)#¢ for each feCy(T) by [1]. Since it is easy to verify that
P,(f) is a closed, bounded, and convex subset of M, we see that
Py Co(T) - H(M).

The first result is a useful distance formula from any fe Co(T) to M.
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3.1. LemMa. For each fe Cy(T),

d(f, M)= | f s =max{|f(s)|s€ S}
Proof. For any ge M,

1~ gl > max | (s) — g(s)| = max | /(5)|.

Thus
a(f, M)z | fls- (3.1.1)

Since f'is continuous, for any ¢>0 and s S choose a neighborhood U,
of 5 so that

Lf(5)—f(s) <e forall reU,.

Since S is compact, there exist a finite number of points sy, ..., 5, in .S such
that S {7} U,

By Urysohn’s lemma we can choose §e Cy(¢) so that §=1on S, §=0
off Ui U,, and 0< g<1. Then g:=f(1—-g)eCy(T), g=0 on S, and so
geM. Ufte T\U] U,, g(t)=0so0 | f(t)— g(¢)| =0.If te U, for some i, then

/()= g = f(2) DI < SO <) = S + 1 f )l <e+ |l s-
Hence || f — gl <|flls+ & which implies
difi M)<|fls+e.

Since ¢ was arbitrary,
dif, M)<|iflls. (3.1.2)

Combining (3.1.1) and (3.1.2) we obtain the result. |
The kernel of P,, is the set

ker Py i={fe Co(TN0€ Py (f)} = {fe Co( DI fl = d(f, M)}.

An immediate consequence of Lemma 3.1 is the

3.2. COROLLARY. ker Py, = {fe Co(T)| IS =If]s}

We now state the main result of this section. It reveals an intimate
connection between the set of best approximations to f from M and the set
of all Tietze extensions of f].
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3.3. THEOREM. For each fe Cy(T),

Py (f)=f—E(fls)
In particular, best approximations from M to any f'e Co(T) always exist.

Proof. Let ge Py, (f). Then, using Lemma 3.1, £ = f— g satisfies
Il =1/ —gll=d(f, M)=1fls

and, for te S,

h(t)=f(1)— g(1) = f(2).

Thus ke E(f|g) and gef —E(fls).
Conversely, suppose A€ E(f|s). Setting g= f—h we see that g=0 on §
so ge M. Also,

If =gl =1hll=1111ls=d(f, M)
implies that ge Py, (f). Hence h=f—gef— Py, (f). &

Remark. 1t is worth noting that Theorem 3.3 can also be deduced from
a general existence theorem established by one of us [4, Theorem 4.2].
There it was proved that if M is any subspace of a' normed linear space X,
then

Pux)y=x—H ,.(x), xe X,

where H ,,.(x) denotes the set of all “Helly extensions” of x relative to M *
That is,

Hyu(x)={yeX|[x*(y)=x*(x) for every x*e M+, | p[ = x|},

where ||x|| ;o =sup{x*(x)|x*eM™, |[x*|<1}. If we specialize this by
taking X = Co(T) and M= {ge Co(T) | gls=0}, we obtain that H,,.(x)=
E(x}s) and we recover Theorem 3.3.

Let X and Y be Banach spaces and H(Y) denote the collection of all
nonempty subsets of ¥ which are closed, bounded, and convex. Endow
H(Y) with the Hausdorff metric H. That is, for 4, Be H(Y),

H(A, B) :=max{sup d(a, B), sup d(b, A)},

acA be B

where

d(a, B) = inf [la—b].
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A (set-valued) mapping F: X — H(Y) is called bounded if there is a constant
¢ such that

sup{ll¥il|yeF(x)} <clx|
for each xe X. F is called homogeneous if
Flax)=aF(x)

for each xe X and aeR.
A function f: X— Y is called a selection for F if f(x)e F(x) for each
x€ X. A selection is called homogeneous if

flax)=af(x) for each xe X, aeR.

If Y is a subspace of X, a selection f'is called additive modulo Y if

fx+y)=f(x)+ f(p) for every xeX, yeVY.

3.4. CorOLLARY. The metric projection Py, has a continuous selection
which is homogeneous and additive modulo M.

Proof. By Corollary 2.3, F has a selection e which is continuous and
homogeneous. Define p on Cy(T) by p=1-—e~ R, where [ is the identity on
Co(T) and R:Co(T)—> C(S) is the restriction map Rf=f|s. From
Theorem 3.3 it is seen that p is a selection for P,, which is continuous and
homogeneous. To show that p is additive modulo M, let fe Co(T) and
ge M. Then

pf+g)=f+g—el(f+ls)=f+g—elfls+gls)=f+g—elfls)
=p(f)+g=p(f)+p(g) 1

Fakhoury [8] and, independently, Holmes, Scranton, and Ward [9],
have given nonconstructive proofs that the metric projection onto an
M-ideal in a Banach space has a continuous homogeneous selection. Yost
[137 has deduced, more generally, that for a certain class of subspaces M
which include the M-ideals, P,, admits a continuous homogeneous selec-
tion which is additive modulo M. Since each M-ideal in Cy(T) has the form

M={feCyT)|fls=0}

for some closed subset S of 7, it follows that nonconstructive proofs of
Corollary 3.4 were also given in [13] and (without the “additive modulo
M” statement) in [8, 9. '
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3.5. CorROLLARY. The metric projection P,, is Lipschitz continuous:

H(Puy(f), Pru(g)) <2| [~ gll
Jor all f, g in Co(T).

Proof. Using Theorems 3.3 and Lemma 2.2, we obtain for any f, g in
CO( T)’

H(Py () Pr(g)=H(f—E(f|s) g— E(gl s )< H(E(f5), E(gls))+ /gl
<|f—glstlf—gll<2lf—gl. §

Remarks. The constant 2 in Corollary 3.5 is best possible. This can be
seen, for example, by taking 7= {1,2} and S= {2} so C(T)=1,(2) is the
plane and M= {feC(T)|f(2)=0} is the “horizontal axis.” Taking
f=(0,0) and g=(1, 1), we observe that P, (f)=0,

P (g)={p(0, DI0<p <2y,

and

H(Py(f), Pr(g))=2=2|f— gl

It perhaps is worth noting that Corollary 3.4 can also be deduced from
Corollary 3.5, the Michael selection theorem, and Theorem 3.4 of [6].

Another consequence of Theorem 3.3 is that selections of one type for the
mapping E are equivalent to selections of a similar type for P,,. Before
proving this, it is convenient to isolate a key step that is used in at least
three places in the sequel.

3.6. LeMMA. Let p: Co(T) — M be idempotent (i.e., p> = p) and additive
modulo M. Then

f=p(f)=h—ph) (36.1)

Jor all f,he C(T) with f|s=hlg. In particular, the function e: C(8)—
Co(T), defined by

e(g)=f—plf), geC(S),

Jfor any fe Co(T) with f|s= g, is well-defined.
Proof. Let f,he Co(T) and f|g=h|s. Then g:=f—he M so

p(f)=plh+g)=p(h)+ p(g)=ph)+ g=p(h)+f—h
This proves (3.6.1). |

640/64/1-5
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In particular, p satisfies the hypothesis of Lemma 3.6 if p is an ordinary
(i.e., linear) projection onto M, or if p is a selection for P, which is
additive modulo M.

3.7. THEOREM. E has a linear selection (resp. Lipschitz continuous
selection) if and only if P,, has a linear selection (resp. Lipschitz continuous
selection which is additive modulo M).

Proof. We prove the statement about Lipschitz continuous selections.
The statement about linear selections is similar, but simpler.

Let e be a Lipschitz continuous selection for E. Then there is a constant
4 >0 such that

le(f)—e(g)l <Alf—gls (37.1)
for all £, g € C(S). Define p on Cy(T) by
pif)y:=f—elfls)

By Theorem 3.3, p is a selection for P,,. Also,
Ip(f)— B = f—e(fls)—h+e(hls)| <|f—hl + |e(f]s)—e(hls)|
SIf=Al+ AL =hlls <L+ A) | f— A
implies that p is Lipschitz continuous. Further, for fe Co(T) and ge M,
pif+e)=Sreg—el(f+8)ls)=f+g—elfls)=p(f)+g=p()+p(g)

implies that p is additive modulo M.

Conversely, suppose p is a Lipschitz continuous selection for P,, which
is additive modulo M, and having Lipschitz constant i. Then by
Lemma 3.6, the function e: C(S) — Co(T) defined by

e(g)=/f—p(f),

for any f'e Co(T) with f|s= g, is well-defined. Moreover, by Theorem 3.3,
e is a selection for E.

For g,eC(S) (i=1,2), choose fieCyT) so that fi|s=g, and
hie E(g,— g,). Then

(fith)s=g1+8:—8 =8

le(g1)—e(g)l =1 /i — p(f1) — (f1 + ho) + p(fL + 20l
=|l=hy+ p(fi +h)— p(f1)]
<Nl + lp(fi+ hy) = ()
S +4) ll=0+1) 81— &alls-

SO

This proves that ¢ is Lipschitz continuous. |



TIETZE EXTENSIONS 65

The next result gives a useful alternate characterization of when E has a
linear selection.

3.8. THEOREM. The following statements are equivalent,

(1) E has a linear selection;
(2) Py, has a linear selection;
(3) ker Py, contains a closed subspace N such that Cof{T)=M ® N,

(4) M is complemented in Co(T), say Co(T)=M @ N, and the projec-
tion P onte M along N satisfies |I— P| = 1.

Proof. The equivalence of (1) and (2) is contained in Theorem 3.7, and
the equivalence of (2) and (3) is from Stoer [127] and, more generally,
{5, Theorem 2.2].

{3)=>(4). Assume (3) holds and let P denote the projection onto M
along N. Then since /— P is the projection onto N, [/— P|| = 1. But for all
feCy(T), f—P(f)e Ncker Py, so

I=P) Sl =1f =P =df—P(f), M)=d(f. M)<|f].

Hence |[/— P} =1.
(4)=>(2). Suppose (4) holds. Let fe Co(T) and choose any ge P, (/).
Then

If=PONi=1f—g—P(f=g=1U-P)f—g)<|f—zl
implies that P(f)e P),(f). That is, P is a linear selection for P,,. §

It was proved by Borsuk [3] (more generally, see Dugundji {7] and
Arens [27) that if T is (compact and) metrizable, then E has a linear selec-
tion. However, their proofs are also valid in the locally compact case. This
fact, along with Theorem 3.8, implies the next result.

3.9. CoroLLARY. If T is metrizable, then P, has a linear selection and
M is complemented.

In particular, Theorem 3.8 implies that if £ has a linear selection, then A/
is complemented. We do not know whether the converse is valid. That is,
if M is complemented, must E have a linear selection? However, we do
have a partial converse.

3.10. THEOREM. [If M is complemented, then E has a Lipschitz continuwous
homogeneous selection. In particular, P, has a Lipschitz continuous selection
which is homogeneous and additive modulo M.
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Proof. The last statement follows from Theorem 3.7 and the comment
following Lemma 2.2.

Let Co(T)y=M @ N, let P denote the projection onto M along N, and let
Q=I—P. That is, Q is the projection onto N along M. Then by
Lemma 3.6, Q(f)= Q(h) for each f, he Co(T) with f|s=h|¢. Next define e
on C(S) by

e(g)= [Q(f)]“_g“sgns

for any fe Co(T) with f|g= g. [ The notation [r]2 is defined as in the proof
of Lemma 2.2.7 Since f— Q(f)e M for any fe Cy(T), when fe E(g) we
have that

g=fls=0(ls

so g =e(g)|s and e(g) € E(g). That is, e is a selection for E. Next we verify
that e is Lipschitz continuous.
First observe that for @, 50, it is easy to verify that

[t ]2 = [6]e 0 <t~ (3.10.1)

and
(112, — [11%,l <|b—al. (3.10.2)

Now let g,e C(S) (i=1,2) and choose f,€Co(T) such that fi|s= g,

hi€E(g,— g1), and set f5=f; + h;. Then f,|s=g, and |h| = g.— g:lls.
Let ;L=max{”g1“3, ”gzus}- Then

0<i-—lagls<lgi—gls (i=12) (3.10.3)
Using (3.10.1), (3.10.2), and (3.10.3), we obtain

le(g)—e(g2) = 1[Q(f)1"hs . — [Q(f2)1"=s
<ILQU)Y8s, — [T+ ITQUDTE ,— Lo,
+ [ — [O(f) 1"l i
<I2=lgillsl +100/) — Q) — 14—l gl sl
<2lgi— glls+IQI i~ f2l
=2lg;— galls+ 120 Il =2 +1Q1) g, — glls.

This proves e is Lipschitz continuous with Lipschitz constant 2 + | Q||
Finally, by the remark following Lemma 2.2, we can arrange that e is
homogeneous. |
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There are cases in which P, has a linear selection and M is comple-
mented, which do not require the metrizability of 7. This is when either §
or 7\S is finite. That is, when M is either finite-codimensional or finite-
dimensional.

3.11. COROLLARY. Let S={s,,..,5,} be a finite subset of the locally
compact Hausdorff space T and let
M= {feCyT)|f(s)=0 (=12, ..,n)}

Then E has a linear selection given by
e(g)=) fls)x;, geC(S) (3.11.1)
1
and P, has a linear selection given by

o)=f=3 f(s)x  feColT), (3.11.2)

where {xy, x5, .., X,,} is any prescribed set in Co(T) having the properiy thar
0<x,<1, x;(t;)=1, and the supports of x; and x; are disjoint if i # j.

Proof. The existence of the functions x; is guaranteed by Urysohn’s
lemma. Next note that the mapping e on C(8) defined by (3.11.1) satisfies
e: C(S) > Co(T), e is linear, and e(g)e E(g) for each geC(S). By
Theorem 3.3, the map p defined by (3.11.2) is a linear selection for P,,.

3.12. CorOLLARY. Let S be a compact subset of the (locally) compact
Hausdorff space T such that T\S is finite, and let

M={feCy(T)|fls=0}.
Then E has a linear selection e given by

gy i teS

. 7 orens  8ECO) (3.12.1)

el =

and P, has a linear selection p defined by
) =f—frs,  FeCo(T), (3.12.2)

where 3¢ is the characteristic function of S.

Proof. Since S is both open and closed, yge Co(T) and e(g) e Co(T) for
each g e C(S). The remainder of the proof is like that of Corollary 3.11. §

The last two corollaries along with Corollary 3.9 raise the natural
question: Must P,, (or equivalently £) always have a linear selection?
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